也许,人和人确实不一样吧……

    关飞对他们从惊讶到淡然的改变并没太多关注,他的精力全都集中在机床上。

    为了更加清楚地看清每一个细微变化,他让人在车床旁围了一圈白炽灯,将车床的每一个局部都映照得纤毫毕现。

    他在床身慢慢走动,眼睛紧紧盯着导轨,视觉信号传递到大脑,经过生物副脑放大,对其进行最为精细的判断。

    他感觉到这里没有完全对准,应该还有一点误差,可看来看去,也找不到误差所在。

    人的肉眼最小能观测到多么细小的物体?

    这个问题公开的答案,通常都是一百微米。但在实际生活中,人却能看清每一根头发丝,而头发丝的直径是小于一百微米的。还有蚕丝,直径通常为二十微米到三十微米之间,可人同样能用肉眼将其挑出来,这就和公认的答案有很大不同。

    正确的答案,是人眼的最小观测角为一,那么最小观测物体为几十微米。可是在光照充足的情况下,人只要稍微倾斜一下观察角,换一个观测位置,就有可能把之前没发现的东西找到。

    那么在极限情况下,人类是能看到直径仅为十几微米的东西的,特别是这是一样比较长的东西,而不是一个点。

    这种观察极其细微,需要非常敏锐的观察力和洞察力,经过较长训练才能做到。

    关飞有生物副脑帮助,他不需要特别的训练,只要提高注意力,根据生物副脑反馈的信息及时作出正确判断即可。

    既然生物副脑表示,这里应该存在着误差,那就肯定是刚才走过时,视觉光线在这里出现了帧幅错位。只不过他当时没注意到,一晃而过,现在定下心来,再仔细看,又因为错位太过细微,肉眼无法判别。

    他没有感到沮丧,将灯光重新调整了一下位置,然后走到床尾,将导轨放到视线中心位置,慢慢移动头部。

    生物副脑对肌体的控制达到了细胞级,正常人动作时是无法准确判断位移数据的,但他却能在生物副脑的辅助下,将位移信息精确到一微米!

    看见了!

    随着他的观察位置缓慢变化,眼前导轨形成的线条,陡然从原先的位置,一下跳到了另一处——中间有两格误差!